An Unusual Land-Fill: the Highest Geogrid-Reinforced Slope in China

Authors: Dai, Z. J., BOSTD Geosynthetics Ltd., Qingdao, China
 Wrigley, N. E., NewGrids Ltd., Poole, England
 Chen, M. F., Yellow River Engineering Consulting Co., Ltd., Zhengzhou, China
 Chen, L. L., BOSTD Geosynthetics Qingdao Ltd., Qingdao, China

Background:

- In Dai et al, 2008, the construction of a 52m-high slope for the access road to Jinping Power Station at Mianshagou was described. The finished structure is shown in Figure 1.
- As design of the road progressed it became clear that about 400,000m3 of surplus fill would be generated from tunneling and cuts into the mountain sides.
- No normal landfill site was available in this mountainous territory for this surplus fill.
- A steep-side gulley was available at the side of the road at Jinbazigou but without sufficient capacity at a non-reinforced slope angle.
- Foundation conditions at the foot of this gulley were not suitable for a retaining wall to hold the fill.

Selected Solution:

- Following the success of the Mianshagou slope an even higher geogrid-reinforced slope face was selected for design.
- Design height was 72.5m to allow space for all possible fill. See Figure 2.
- Internal sand-bag formwork was chosen for ease of construction. See Figure 3.

Result:

- At 66m height all available fill used so construction stopped at that height.
- 397,590m3 of fill absorbed.
- 9,790m2 of level ground was created in a region where it is said that “an inch of ground is worth an inch of gold.”
- A porous, self-draining structure.
- A flexible structure well able to withstand the seismic conditions of the site.
- A major cost saving over all other solutions for disposing of the surplus fill with the bonus of the generation of a 1 hectare level site for future use.

Reference: